Посещая этот сайт, вы принимаете программу использования cookie. Подробнее о нашей политике использования cookie.

ГОСТ Р 8.904-2015

ГОСТ Р 57283-2016 ГОСТ Р 56665-2015 ГОСТ Р 56667-2015 ГОСТ Р 56664-2015 ГОСТ Р 56666-2015 ГОСТ Р 56663-2015 ГОСТ Р 8.904-2015 ГОСТ Р 56656-2015 ГОСТ Р ИСО 4545-4-2015 ГОСТ Р ИСО 4545-1-2015 ГОСТ Р ИСО 20482-2015 ГОСТ Р 56186-2014 ГОСТ Р 55047-2012 ГОСТ Р 56187-2014 ГОСТ Р 56185-2014 ГОСТ Р 55043-2012 ГОСТ Р ИСО 10113-2014 ГОСТ ISO 7800-2013 ГОСТ Р ИСО 148-1-2013 ГОСТ Р ИСО 7438-2013 ГОСТ Р 55807-2013 ГОСТ Р 55806-2013 ГОСТ Р 55805-2013 ГОСТ Р 55045-2012 ГОСТ Р 55044-2012 ГОСТ Р 55046-2012 ГОСТ Р 8.748-2011 ГОСТ Р 53966-2010 ГОСТ Р 53965-2010 ГОСТ Р 53568-2009 ГОСТ Р ИСО 2566-1-2009 ГОСТ Р ИСО 2566-2-2009 ГОСТ 31244-2004 ГОСТ Р 52889-2007 ГОСТ Р 53205-2008 ГОСТ Р 52891-2007 ГОСТ Р 53204-2008 ГОСТ Р 52890-2007 ГОСТ Р 53006-2008 ГОСТ 7564-97 ГОСТ 25.503-97 ГОСТ 18227-98 ГОСТ 14019-2003 ГОСТ 18661-73 ГОСТ 8.044-80 ГОСТ 17367-71 ГОСТ 2999-75 ГОСТ 9450-76 ГОСТ 22762-77 ГОСТ 22706-77 ГОСТ 23273-78 ГОСТ 10510-80 ГОСТ 3565-80 ГОСТ 8693-80 ГОСТ 3248-81 ГОСТ 8.426-81 ГОСТ 25172-82 ГОСТ 7268-82 ГОСТ 8817-82 ГОСТ 8.509-84 ГОСТ 11701-84 ГОСТ 26446-85 ГОСТ 13813-68 ГОСТ 18835-73 ГОСТ 8818-73 ГОСТ 22761-77 ГОСТ 9454-78 ГОСТ 10145-81 ГОСТ 25095-82 ГОСТ 11150-84 ГОСТ 9651-84 ГОСТ 28868-90 ГОСТ 9013-59 ГОСТ 22975-78 ГОСТ 23677-79 ГОСТ 8.398-80 ГОСТ 26007-83 ГОСТ 25282-93 ГОСТ 30003-93 ГОСТ Р 52764-2007 ГОСТ 22848-77 ГОСТ 30456-97 ГОСТ 1497-84 ГОСТ 10006-80 ГОСТ 25.502-79 ГОСТ 25.505-85 ГОСТ 25.506-85 ГОСТ Р 52731-2007 ГОСТ Р 52727-2007

ГОСТ Р 8.904−2015 (ИСО 14577−2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров

ГОСТ Р 8.904−2015
(ИСО 14577−2:2015)

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

ИЗМЕРЕНИЕ ТВЕРДОСТИ И ДРУГИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ ПРИ ИНСТРУМЕНТАЛЬНОМ ИНДЕНТИРОВАНИИ

Часть 2

Поверка и калибровка твердомеров

State system for ensuring the uniformity of measurements. Metallic materials. Instrumented indentation test for hardness and materials parameters. Part 2. Verification and calibration of testing machines

ОКС 17.040.10*

_____________________

* По данным официального сайта Росстандарта ОКС 17.020,

здесь и далее. — Примечание изготовителя базы данных.

Дата введения 2016−10−01

Предисловие

1 ПОДГОТОВЛЕН Всероссийским научно-исследовательским институтом физико-технических и радиотехнических измерений Федерального агентства по техническому регулированию и метрологии на основе собственного аутентичного перевода на русский язык англоязычной версии международного стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 206 «Эталоны и поверочные схемы», ПК 206.2 «Эталоны и поверочные схемы в области измерений механических величин"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 8 декабря 2015 г. N 2114-ст

4 Настоящий стандарт модифицирован по отношению к международному стандарту ИСО 14577−2:2015* «Материалы металлические. Определение твердости и других параметров материалов методом инструментального индентирования. Часть 2. Поверка и калибровка твердомеров» (ISO 14577−2:2015 «Metallic materials — Instrumented indentation test for hardness and materials parameters — Part 2: Verification and calibration of testing machines», MOD).

При этом дополнительные слова (фразы, показатели, их значения), включенные в текст стандарта для учета потребностей экономики Российской Федерации и особенностей российской национальной стандартизации, выделены подчеркиванием сплошной горизонтальной линией.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5−2012 (подраздел 3.5)

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0−2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение

Под инструментальным индентированием понимается процесс, управляемый специальной испытательной установкой, при котором происходит непрерывное внедрение наконечника (алмазная пирамида Берковича, Виккерса, твердосплавный шарик и т. д.) в испытуемый образец под действием плавно возрастающей нагрузки с последующим ее снятием и регистрацией зависимости перемещения наконечника от нагрузки.

Твердость обычно определяют как сопротивление материала вдавливанию другого, более твердого материала. Результаты, полученные при определении твердости по Роквеллу, Виккерсу и Бринеллю, определяют после снятия испытательной нагрузки. Поэтому влияние упругой деформации материала под воздействием наконечника (индентора) не учитывается.

Настоящий стандарт подготовлен для обеспечения возможности определения твердости и других механических характеристик материала путем совместного измерения нагрузки и перемещения наконечника во время индентирования. Прослеживая полный цикл нагружения и снятия испытательной нагрузки, можно определить значения твердости, эквивалентные значениям, измеренным классическими методами измерения твердости. Также этот метод позволяет определить дополнительные свойства материала, такие как его модуль упругости индентирования и упругопластическую твердость. Эти значения можно вычислить без оптического измерения отпечатка.

Стандарт разработан для обеспечения возможности получения характеристик материалов путем проведения анализа данных после испытаний.

1 Область применения

Настоящий стандарт устанавливает методику поверки и калибровки твердомеров, предназначенных для измерения твердости по шкалам Мартенса и шкалам индентирования в соответствии с ГОСТ Р 8.748.

В ней описываются метод поэлементной поверки и поверки по эталонным мерам твердости. Устанавливается требование к применению метода поверки по мерам твердости в дополнение к поэлементному методу поверки, а также для периодической контрольной проверки твердомера во время эксплуатации.

Данный стандарт применим также к портативным твердомерам.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 8.748−2011 (ИСО 14577−1:2002) Государственная система обеспечения единства измерений. Металлы и сплавы. Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 1. Метод испытаний

ГОСТ Р ИСО 6507−1-2007 Металлы и сплавы. Измерение твердости по Виккерсу. Часть 1. Метод измерения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Общие условия

3.1 Подготовка

Твердомер должен быть сконструирован таким образом, чтобы его можно было поверять (калибровать). Перед поверкой (калибровкой) необходимо проверить соблюдение условий, изложенных в 3.2−3.4.

3.2 Твердомер

Твердомер должен быть настроен для эксплуатации в соответствии с требованиями Руководства по эксплуатации и должен быть установлен в условиях окружающей среды, отвечающих требованиям данного стандарта, ГОСТ Р 8.748 и, где применимо, [1]. Твердомер должен быть защищен от вибраций. Для испытаний в микро- и нанодиапазонах твердомер должен быть также защищен от потоков воздуха и колебаний температуры.

Влияние факторов окружающей среды на данные может быть оценено путем выполнения индентирования при малой нагрузке (например, эквивалентной обычной нагрузке при начальном контакте) на эталонной мере твердости и анализа перемещения наконечника с течением времени. Непостоянство нагрузки — это жесткость контакта (получаемая из кривой снятия нагрузки), умноженная на среднее квадратическое отклонение (СКО) измерения перемещения после вычета какого-либо фонового дрейфа в среднем перемещении. Эти неопределенности затем должны быть включены в суммарную стандартную неопределенность измерений, рассчитываемую в соответствии с ГОСТ Р 8.748.

3.3 Наконечник

Для того чтобы получить хорошую повторяемость результатов измерений, держатель наконечника должен быть жестко закреплен в твердомере.

Держатель наконечника должен быть сконструирован таким образом, чтобы его вклад в общую податливость был минимальным (приложение А). Для корректных измерений твердости при глубинах внедрения меньше 6 мкм необходимо определять функцию площади поверхности или площади поперечного сечения наконечника (приложение В).

3.4 Приложение испытательной нагрузки

Приложение и снятие нагрузки должно производиться без ударов или вибраций, которые могут значительно повлиять на результаты измерений. Должна быть возможной проверка устройства приложения нагрузки, выдержки и снятия испытательной нагрузки.

3.5 Проверка работоспособности твердомера

Проверка работоспособности твердомера проводится по эталонным мерам твердости, например проверку можно проводить согласно приложению С.

4 Поэлементная поверка и калибровка твердомера

4.1 Общие положения

4.1.1 Поэлементная поверка и калибровка должна выполняться при постоянной температуре эксплуатации (23±5)°С. Для определения достоверности калибровочных значений как функции температуры поэлементную калибровку следует проводить в подходящих точках этого диапазона. При необходимости могут быть определены поправочная функция калибровки или набор калибровочных значений, достоверных при определенных значениях рабочей температуры.

4.1.2 Средства измерений, используемые для поэлементной поверки, должны быть поверены. Средства измерений, используемые для поэлементной калибровки, должны иметь прослеживаемость к национальным эталонам.

4.1.3 Поэлементная поверка (калибровка) включает:

а) подтверждение соответствия прикладываемой и снятой нагрузки требованиям 4.2 (определение отклонения прикладываемых нагрузок от номинальных);

б) подтверждение соответствия показаний устройства для измерения перемещения наконечника требованиям 4.3 (определение отклонений измеряемых перемещений от номинальных);

в) подтверждение соответствия значения податливости твердомера требованиям 4.4 (определение податливости твердомера);

г) подтверждение соответствия геометрических параметров наконечника требованиям 4.5 (определение геометрических параметров наконечника);

д) подтверждение соответствия функции площади наконечника требованиям 4.6, если глубина индентирования менее 6 мкм;

е) определение временных интервалов цикла измерений.

4.2 Подтверждение соответствия приложенной и снятой нагрузки

4.2.1 Нагрузка должна измеряться следующими методами, например:

— посредством устройства для измерения нагрузки класса 1 или выше по стандарту [2];

— посредством уравновешивания нагрузкой, определенной с погрешностью ±0,2%, прилагаемой с помощью поверенных (калиброванных) грузов;

— посредством электронных весов с точностью измерений 0,1% максимальной испытательной нагрузки или 10 мкН для нанодиапазона.

4.2.2 Каждый используемый диапазон нагрузок должен быть проверен (измерен) во всем диапазоне нагрузок как при приложении, так и при снятии испытательной нагрузки. Должно быть проверено (измерено) минимум 16 значений нагрузок, равномерно распределенных в диапазоне приложения нагрузки, т. е. 16 значений нагрузок во время приложения силы и 16 значений нагрузок во время снятия силы. Эта процедура должна повторяться не менее трех раз, после этого вычисляется среднее арифметическое значение нагрузки из трех результатов измерений для каждой точки при нагружении и разгружении.

При проверке соответствия прикладываемой и снимаемой нагрузки разность между максимальным и минимальным значениями измеренной нагрузки не должна превышать половину предела допустимого отклонения, указанного в таблице 1.

Для каждой серии из трех измерений нагрузки разность между средним из измеренных значений испытательной нагрузки и номинальной нагрузкой должна находиться в пределах допустимых отклонений, указанных в таблице 1.

4.2.3 Если нагрузка, прикладываемая или снимаемая нагружающим устройством твердомера, не удовлетворяет требованиям таблицы 1, то твердомер считается непригодным к эксплуатации.


Таблица 1 — Допустимые отклонения значений испытательной нагрузки

Диапазон испытательной нагрузки (F), Н
Пределы допустимых отклонений, %

FГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров2

±1,0

0,001ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеровF<2

±1,0

F<0,001

±2,5ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеровДля нанодиапазона (ГОСТ Р 8.748) рекомендуется допустимое отклонение ±1%.

4.3 Подтверждение соответствия устройства измерения перемещения наконечника в твердомере

4.3.1 Требуемое разрешение системы для измерения перемещения наконечника зависит от значения наименьшей измеряемой глубины индентирования. Для микродиапазона оно составляет 0,2 мкм; для макродиапазона ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров2 мкм.

Шкала прибора для измерения перемещения должна быть отградуирована таким образом, чтобы позволяла проводить измерения глубины индентирования с разрешением, указанным в таблице 2.

4.3.2 Каждый измеряемый диапазон перемещений должен быть проверен с помощью подходящего метода и соответствующей измерительной системы. Устройство должно быть проверено минимум в 16 точках в каждом направлении, равномерно распределенных в проверяемом диапазоне перемещений. Эта процедура должна повторяться три раза. Для каждой точки вычисляется среднее арифметическое значение из трех измеренных перемещений.

Для измерения относительного перемещения наконечника рекомендуются следующие измерительные системы: лазерный интерферометр, индуктивный датчик, емкостный датчик и пьезодатчик.

Для каждой серии из трех измерений разность между средним значением перемещения и номинальным должна находиться в пределах допустимого отклонения, указанного в таблице 2.


Таблица 2 — Разрешение и пределы допустимых отклонений устройства для измерения перемещения наконечника

Диапазон применения
Разрешение устройства для измерения перемещения, нм
Допустимое отклонение
Макродиапазон

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров100

±1% h
Микродиапазон

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров10

±1% h
Нанодиапазон

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров1

±2 нмГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеровДля нанодиапазона (ГОСТ Р 8.748) рекомендуется допустимое отклонение ±1% h; h — номинальное значение перемещения наконечника.

4.3.3 Изменения температуры являются наиболее частым источником дрейфа. Чтобы минимизировать вызванный температурой дрейф, температуру прибора нужно поддерживать таким образом, чтобы скорость дрейфа оставалась постоянной в течение одного измерительного цикла. Скорость дрейфа должна измеряться во время, непосредственно до или после каждого измерительного цикла, например путем отслеживания перемещения наконечника в течение соответствующего времени выдержки. В данные поверки (калибровки) перемещения должна быть введена поправка на температурный дрейф, и произведение изменения скорости дрейфа на длительность одного измерительного цикла должно быть меньше допустимого отклонения, указанного в таблице 2. Неопределенность результатов измерений скорости должна быть учтена при расчете неопределенности результатов измерения перемещения наконечника.

4.3.4 Если отклонения показаний устройства для измерения перемещения наконечника не удовлетворяют требованиям таблицы 2, то твердомер считается непригодным к эксплуатации.

4.4 Определение податливости твердомера

4.4.1 Общие положения

См. приложение D настоящего стандарта и приложение C ГОСТ Р 8.748−2011.

Определение податливости твердомера должно проводиться после того, как испытательная нагрузка и система измерения перемещения были проверены в соответствии с 4.2 и 4.3.

4.4.2 Процедура

Определение податливости твердомера осуществляется путем измерений модуля Юнга индентирования минимум при пяти различных значениях испытательной нагрузки. Рекомендован метод 3, описанный в приложении D. Вкратце он состоит в следующем.

Эталонная мера твердости должна быть закреплена в системе для инструментального индентирования точно таким же образом, каким потом будут закрепляться испытуемые образцы. Это необходимо для того, чтобы обеспечить достоверное воспроизведение мерой твердости значения суммарной податливости твердомера в каждом конкретном измерении. На податливость твердомера могут влиять конструкция и крепление наконечника, а также способ крепления образца. К примеру, крепление из пластика (например, ПВХ) может вносить дополнительную податливость в процесс измерений. Определение податливости твердомера должно проводиться с помощью того наконечника, который будет использоваться в дальнейших измерениях. Для глубин индентирования более 6 мкм необязательно учитывать реальную функцию площади наконечника. Для определения податливости твердомера должна использоваться эталонная мера твердости с известным значением модуля упругости при индентировании, не зависящим от глубины индентирования (например, рекомендуется такой материал, как вольфрам). Диапазон испытательной нагрузки определяется минимальной испытательной нагрузкой, которая соответствует глубине индентирования 6 мкм, и максимальной возможной испытательной нагрузкой твердомера. Преимуществом больших значений глубины индентирования является то, что погрешности определения функции площади наконечника будут меньше. Однако необходимо следить за тем, чтобы результаты испытаний не были искажены из-за наплывов на материале меры твердости. Измеренное значение податливости при индентировании затем можно сравнить с вычисленным значением податливости с помощью образца с известным значением модуля упругости при индентировании. Для повторного определения податливости твердомера найденную разность значений податливости применяют к данным перемещения наконечника, с тем чтобы уточнить оценку глубины контакта и, следовательно, оценку податливости твердомера при каждой нагрузке. Эту процедуру повторяют до тех пор, пока не будут получены согласованные значения податливости твердомера и глубины контакта.

Для глубины индентирования менее 6 мкм вышеописанный метод должен применяться с тем исключением, что для расчета контактной податливости с помощью эталонной меры твердости со значением модуля упругости при индентировании должна использоваться действительная площадь контакта, вычисленная по определенной функции площади наконечника.

У многих приборов нано- и микродиапазона значение податливости твердомера не зависит от нагрузки. Однако если это не так, то можно определить функцию податливости твердомера с помощью вышеописанной процедуры, но в более широком диапазоне нагрузок. Диапазон испытательных нагрузок определяется глубиной индентирования более 0,5 мкм и максимальной испытательной нагрузкой твердомера или максимальной испытательной нагрузкой, при которой не происходит никакого необычного отклика материала испытуемого образца (например, наплывов металлов или растрескивания керамики или стекла).

Если податливость твердомера определяется повторно, то должна выполняться поверка твердомера по эталонным мерам твердости.

Погрешность и повторяемость твердомера при соответствующих испытательных нагрузках не должны превышать требований, указанных в 5.2.5 (см. таблицы 7 и 8). В 5.1 приводится блок-схема действий, предпринимаемых при поверке твердомера по эталонным мерам твердости. Если после применения текущего действительного значения поправки на податливость твердомера и функции площади наконечника измеренное значение меры твердости не удовлетворяет требованиям таблицы 8, и в результате повтора процедуры с помощью заново проверенного (откалиброванного) наконечника и действительного значения поправки на податливость твердомера, соответствующего этому наконечнику, получить номинальное значение меры также не удается, то должны быть проведены сервисное обслуживание твердомера и поэлементная поверка. Текущие процедуры корректировки податливости твердомера приводятся в [3].

Для процедур калибровки, описанных в приложении D, необходимо использовать эталонные меры твердости (см. [1]), которые должны быть изготовлены из изотропного и однородного материала. Принимается, что модуль упругости при индентировании и коэффициент Пуассона не зависят от глубины индентирования.

4.5 Проверка соответствия геометрических параметров наконечника

4.5.1 Общие положения

Геометрические параметры наконечников, используемые при измерениях, должны быть проверены. Соответствие наконечника требованиям данной части стандарта должно быть удостоверено сертификатом. В сертификате должна содержаться информация о функции площади поверхности и площади поперечного сечения наконечника. Последнее должно обеспечиваться с помощью методов, описанных в приложении B, и эталонных мер твердости. Значения всех геометрических параметров должны быть измерены и отражены в сертификате.

Если угол наконечника отличается от номинального значения идеальной геометрии наконечника, то при значениях глубины h более 6 мкм во всех применимых вычислениях должно использоваться среднее значение углов данного наконечника, измеренных при проверке.

Для наконечников, используемых в нано- и микродиапазоне (глубина индентирования менее 6 мкм), должна быть определена функция площади наконечника для соответствующих диапазонов глубин индентирования. Геометрические параметры наконечников должны периодически проверяться (см. раздел 7).

В случае применения неалмазных наконечников должны быть получены значения модуля упругости и коэффициента Пуассона материала наконечника и использоваться в соответствующих расчетах вместо значений алмаза.

Примечание — Погрешность в определении угла при вершине у наконечника Виккерса, равная 0,2°, приводит к систематической погрешности в определении площади 1%.

Для пирамидальных и конических наконечников угол должен быть измерен в диапазонах глубин индентирования, указанных в таблице 3 и на рисунке 1.

Таблица 3 — Значения диапазонов измерения угла пирамидальных и конических наконечников

Глубина индентирования
Макродиапазон, мкм
Микродиапазон, мкм

hГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров

6
0,2

hГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров

200
Заданная макс. глубина индентирования

Рисунок 1 — Иллюстрация диапазонов измерения, указанных в таблице 3

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров


Рисунок 1 — Иллюстрация диапазонов измерения, указанных в таблице 3

4.5.2 Наконечник Виккерса

4.5.2.1 Четыре грани правильной алмазной пирамиды с квадратным основанием должны быть отполированы и не иметь поверхностных дефектов и загрязнений. См. также примечания по очистке поверхности наконечника в приложении D ГОСТ Р 8.748−2011.

Шероховатость поверхности наконечника оказывает влияние на неопределенность измерений, сходное с влиянием шероховатости испытуемого образца. При испытаниях в нанодиапазоне следует учитывать конечную обработку поверхности наконечника.

4.5.2.2 Угол между противоположными гранями при вершине алмазной пирамиды должен составлять 136°±0,3° (см. рисунок 2).

Угол должен быть измерен в диапазоне между hГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомерови hГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров(см. таблицу 3 и рисунок 1). Геометрия и конечная обработка наконечника должны контролироваться во всем калиброванном диапазоне глубин индентирования, т. е. от вершины наконечника hГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеровдо максимальной калиброванной глубины индентирования hГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров.

4.5.2.3 Угол между осью алмазной пирамиды и осью держателя наконечника (перпендикулярного к посадочной плоскости) не должен превышать 0,5°.

4.5.2.4 Четыре грани должны сходиться в точке. Максимальная допустимая длина линии перемычки между противоположными гранями указана в таблице 4 (см. также рисунок 3).

4.5.2.5 Радиус вершины наконечника не должен превышать 0,5 мкм для микродиапазона (см. рисунок 4).

4.5.2.6 Проверка геометрических параметров наконечника должна проводиться с помощью микроскопа или других подходящих устройств.

Если наконечник используется для испытаний в микро- или нанодиапазоне, проверку следует проводить посредством атомно-силового микроскопа с обратной связью. Такие измерения настоятельно рекомендуется выполнять для нанодиапазона.

Таблица 4 — Максимально допустимая длина линии перемычки

Диапазон глубин индентирования, мкм
Максимально допустимая длина линии перемычки, мкм
h>30
1

30ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеровh>6

0,5ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров

h<6

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров0,5ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеровМожно принять, что это значение не превышено, когда перемычка не обнаружена при проверке геометрических параметров наконечника с помощью оптического микроскопа при увеличении в 400 раз.

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеровС учетом поправки на форму наконечника; см. ГОСТ Р 8.748−2011 (С. 2 приложения С).

Рисунок 2 — Угол алмазной пирамиды Виккерса

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров


Рисунок 2 — Угол алмазной пирамиды Виккерса

Рисунок 3 — Линия перемычки на вершине наконечника (схематически)

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров


а — линия перемычки

Рисунок 3 — Линия перемычки на вершине наконечника (схематически)

Рисунок 4 — Радиус вершины наконечника

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров


Рисунок 4 — Радиус вершины наконечника

4.5.3 Наконечники Берковича, модифицированные наконечники Берковича и наконечники «вершина куба»

4.5.3.1 На практике обычно используются два типа пирамидальных алмазных наконечников Берковича. Наконечник Берковича (см. [5]) сконструирован таким образом, чтобы при любой заданной глубине индентирования его площадь поверхности была такой же, как у наконечника Виккерса. Модифицированный наконечник Берковича (см. [11]) сконструирован таким образом, чтобы при любой заданной глубине индентирования его площадь поперечного сечения была такой же, как у наконечника Виккерса.

4.5.3.2 Четыре грани правильной алмазной пирамиды с квадратным основанием должны быть отполированными и не иметь поверхностных дефектов и загрязнений. См. также примечания по очистке поверхности наконечника в приложении D ГОСТ Р 8.748−2011.

Шероховатость поверхности наконечника оказывает влияние на неопределенность результатов измерений, сходное с влиянием шероховатости испытуемого образца. При испытаниях в нанодиапазоне следует учитывать финишную обработку поверхности наконечника.

4.5.3.3 Радиус вершины наконечника не должен превышать 0,5 мкм для микродиапазона и 0,2 мкм для нанодиапазона (см. рисунок 4).

4.5.3.4 Угол между осью алмазной пирамиды и тремя гранями обозначается ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров. Угол между ребрами треугольного основания алмазной пирамиды должен составлять 60°±0,3° (см. рисунок 5).

Рисунок 5 — Угол наконечников Берковича и наконечника «вершина куба»

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров=65,03°±0,30° для наконечника Берковича;

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров=65,27°±0,30° для модифицированного наконечника Берковича;

ГОСТ Р 8.904-2015 (ИСО 14577-2:2015) Государственная система обеспечения единства измерений (ГСИ). Измерение твердости и других характеристик материалов при инструментальном индентировании. Часть 2. Поверка и калибровка твердомеров=35,26°±0,30° для наконечников «вершина куба».

Рисунок 5 — Угол наконечников Берковича и наконечника «вершина куба"

4.5.3.5 Проверка геометрических параметров наконечника должна проводиться с помощью микроскопа или других подходящих устройств.

Если наконечник используется для испытаний в микро- или нанодиапазоне, измерения следует проводить посредством атомно-силового микроскопа с обратной связью. Такие измерения настоятельно рекомендуется выполнять для нанодиапазона.

4.5.4 Шариковые наконечники из твердого сплава

4.5.4.1 Шарики из твердого сплава должны обладать следующими характеристиками:

— твердость: HV 10 не менее 1500 при определении в соответствии с ГОСТ Р ИСО 6507−1;