Посещая этот сайт, вы принимаете программу использования cookie. Подробнее о нашей политике использования cookie.

ГОСТ Р 51927-2002

ГОСТ Р ИСО 15353-2014 ГОСТ Р 55080-2012 ГОСТ Р ИСО 16962-2012 ГОСТ Р ИСО 10153-2011 ГОСТ Р ИСО 10280-2010 ГОСТ Р ИСО 4940-2010 ГОСТ Р ИСО 4943-2010 ГОСТ Р ИСО 14284-2009 ГОСТ Р ИСО 9686-2009 ГОСТ Р ИСО 13899-2-2009 ГОСТ 18895-97 ГОСТ 12361-2002 ГОСТ 12359-99 ГОСТ 12358-2002 ГОСТ 12351-2003 ГОСТ 12345-2001 ГОСТ 12344-88 ГОСТ 12350-78 ГОСТ 12354-81 ГОСТ 12346-78 ГОСТ 12353-78 ГОСТ 12348-78 ГОСТ 12363-79 ГОСТ 12360-82 ГОСТ 17051-82 ГОСТ 12349-83 ГОСТ 12357-84 ГОСТ 12365-84 ГОСТ 12364-84 ГОСТ Р 51576-2000 ГОСТ 29117-91 ГОСТ 12347-77 ГОСТ 12355-78 ГОСТ 12362-79 ГОСТ 12352-81 ГОСТ Р 50424-92 ГОСТ Р 51056-97 ГОСТ Р 51927-2002 ГОСТ Р 51928-2002 ГОСТ 12356-81 ГОСТ Р ИСО 13898-1-2006 ГОСТ Р ИСО 13898-3-2007 ГОСТ Р ИСО 13898-4-2007 ГОСТ Р ИСО 13898-2-2006 ГОСТ Р 52521-2006 ГОСТ Р 52519-2006 ГОСТ Р 52520-2006 ГОСТ Р 52518-2006 ГОСТ 1429.14-2004 ГОСТ 24903-81 ГОСТ 22662-77 ГОСТ 6012-2011 ГОСТ 25283-93 ГОСТ 18318-94 ГОСТ 29006-91 ГОСТ 16412.4-91 ГОСТ 16412.7-91 ГОСТ 25280-90 ГОСТ 2171-90 ГОСТ 23401-90 ГОСТ 30642-99 ГОСТ 25698-98 ГОСТ 30550-98 ГОСТ 18898-89 ГОСТ 26849-86 ГОСТ 26876-86 ГОСТ 26239.5-84 ГОСТ 26239.7-84 ГОСТ 26239.3-84 ГОСТ 25599.4-83 ГОСТ 12226-80 ГОСТ 23402-78 ГОСТ 1429.9-77 ГОСТ 1429.3-77 ГОСТ 1429.5-77 ГОСТ 19014.3-73 ГОСТ 19014.1-73 ГОСТ 17235-71 ГОСТ 16412.5-91 ГОСТ 29012-91 ГОСТ 26528-98 ГОСТ 18897-98 ГОСТ 26529-85 ГОСТ 26614-85 ГОСТ 26239.2-84 ГОСТ 26239.0-84 ГОСТ 26239.8-84 ГОСТ 25947-83 ГОСТ 25599.3-83 ГОСТ 22864-83 ГОСТ 25599.1-83 ГОСТ 25849-83 ГОСТ 25281-82 ГОСТ 22397-77 ГОСТ 1429.11-77 ГОСТ 1429.1-77 ГОСТ 1429.13-77 ГОСТ 1429.7-77 ГОСТ 1429.0-77 ГОСТ 20018-74 ГОСТ 18317-94 ГОСТ Р 52950-2008 ГОСТ Р 52951-2008 ГОСТ 32597-2013 ГОСТ Р 56307-2014 ГОСТ 33731-2016 ГОСТ 3845-2017 ГОСТ Р ИСО 17640-2016 ГОСТ 33368-2015 ГОСТ 10692-2015 ГОСТ Р 55934-2013 ГОСТ Р 55435-2013 ГОСТ Р 54907-2012 ГОСТ 3845-75 ГОСТ 11706-78 ГОСТ 12501-67 ГОСТ 8695-75 ГОСТ 17410-78 ГОСТ 19040-81 ГОСТ 27450-87 ГОСТ 28800-90 ГОСТ 3728-78 ГОСТ 30432-96 ГОСТ 8694-75 ГОСТ Р ИСО 10543-99 ГОСТ Р ИСО 10124-99 ГОСТ Р ИСО 10332-99 ГОСТ 10692-80 ГОСТ Р ИСО 17637-2014 ГОСТ Р 56143-2014 ГОСТ Р ИСО 16918-1-2013 ГОСТ Р ИСО 14250-2013 ГОСТ Р 55724-2013 ГОСТ Р ИСО 22826-2012 ГОСТ Р 55143-2012 ГОСТ Р 55142-2012 ГОСТ Р ИСО 17642-2-2012 ГОСТ Р ИСО 17641-2-2012 ГОСТ Р 54566-2011 ГОСТ 26877-2008 ГОСТ Р ИСО 17641-1-2011 ГОСТ Р ИСО 9016-2011 ГОСТ Р ИСО 17642-1-2011 ГОСТ Р 54790-2011 ГОСТ Р 54569-2011 ГОСТ Р 54570-2011 ГОСТ Р 54153-2010 ГОСТ Р ИСО 5178-2010 ГОСТ Р ИСО 15792-2-2010 ГОСТ Р ИСО 15792-3-2010 ГОСТ Р 53845-2010 ГОСТ Р ИСО 4967-2009 ГОСТ 6032-89 ГОСТ 6032-2003 ГОСТ 7566-94 ГОСТ 27809-95 ГОСТ 22974.9-96 ГОСТ 22974.8-96 ГОСТ 22974.7-96 ГОСТ 22974.6-96 ГОСТ 22974.5-96 ГОСТ 22974.4-96 ГОСТ 22974.3-96 ГОСТ 22974.2-96 ГОСТ 22974.1-96 ГОСТ 22974.13-96 ГОСТ 22974.12-96 ГОСТ 22974.11-96 ГОСТ 22974.10-96 ГОСТ 22974.0-96 ГОСТ 21639.9-93 ГОСТ 21639.8-93 ГОСТ 21639.7-93 ГОСТ 21639.6-93 ГОСТ 21639.5-93 ГОСТ 21639.4-93 ГОСТ 21639.3-93 ГОСТ 21639.2-93 ГОСТ 21639.0-93 ГОСТ 12502-67 ГОСТ 11878-66 ГОСТ 1763-68 ГОСТ 13585-68 ГОСТ 16971-71 ГОСТ 21639.10-76 ГОСТ 2604.1-77 ГОСТ 11930.7-79 ГОСТ 23870-79 ГОСТ 11930.12-79 ГОСТ 24167-80 ГОСТ 25536-82 ГОСТ 22536.2-87 ГОСТ 22536.11-87 ГОСТ 22536.6-88 ГОСТ 22536.10-88 ГОСТ 17745-90 ГОСТ 26877-91 ГОСТ 8233-56 ГОСТ 1778-70 ГОСТ 10243-75 ГОСТ 20487-75 ГОСТ 12503-75 ГОСТ 21548-76 ГОСТ 21639.11-76 ГОСТ 2604.8-77 ГОСТ 23055-78 ГОСТ 23046-78 ГОСТ 11930.11-79 ГОСТ 11930.1-79 ГОСТ 11930.10-79 ГОСТ 24715-81 ГОСТ 5639-82 ГОСТ 25225-82 ГОСТ 2604.11-85 ГОСТ 2604.4-87 ГОСТ 22536.5-87 ГОСТ 22536.7-88 ГОСТ 6130-71 ГОСТ 23240-78 ГОСТ 3242-79 ГОСТ 11930.3-79 ГОСТ 11930.5-79 ГОСТ 11930.9-79 ГОСТ 11930.2-79 ГОСТ 11930.0-79 ГОСТ 23904-79 ГОСТ 11930.6-79 ГОСТ 7565-81 ГОСТ 7122-81 ГОСТ 2604.3-83 ГОСТ 2604.5-84 ГОСТ 26389-84 ГОСТ 2604.7-84 ГОСТ 28830-90 ГОСТ 21639.1-90 ГОСТ 5640-68 ГОСТ 5657-69 ГОСТ 20485-75 ГОСТ 21549-76 ГОСТ 21547-76 ГОСТ 2604.6-77 ГОСТ 22838-77 ГОСТ 2604.10-77 ГОСТ 11930.4-79 ГОСТ 11930.8-79 ГОСТ 2604.9-83 ГОСТ 26388-84 ГОСТ 14782-86 ГОСТ 2604.2-86 ГОСТ 21639.12-87 ГОСТ 22536.8-87 ГОСТ 22536.0-87 ГОСТ 22536.3-88 ГОСТ 22536.12-88 ГОСТ 22536.9-88 ГОСТ 22536.14-88 ГОСТ 22536.4-88 ГОСТ 22974.14-90 ГОСТ 23338-91 ГОСТ 2604.13-82 ГОСТ 2604.14-82 ГОСТ 22536.1-88 ГОСТ 28277-89 ГОСТ 16773-2003 ГОСТ 7512-82 ГОСТ 6996-66 ГОСТ 12635-67 ГОСТ 12637-67 ГОСТ 12636-67 ГОСТ 24648-90

ГОСТ Р 51927−2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция


ГОСТ Р 51927−2002

Группа В39

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СТАЛЬ И ЧУГУН

Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция

Steel and cast iron.
Atomic emission nith inductively coupled plasma spectral method of calcium determination


ОКС 77.080
ОКСТУ 0709

Дата введения 2003−03−01

Предисловие

1 РАЗРАБОТАН И ВНЕСЕН Техническим комитетом по стандартизации ТК 145 «Методы контроля металлопродукции"

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 14 августа 2002 г. N 304-ст

3 ВВЕДЕН ВПЕРВЫЕ

1 Область применения


Настоящий стандарт устанавливает атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения массовой доли кальция в углеродистых, легированных, высоколегированных сталях и чугунах в диапазоне 0,001%-0,10%.

Метод основан на измерении интенсивности эмиссии атомов кальция при введении раствора пробы в источник возбуждения.

2 Нормативные ссылки


В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 4517−87 Реактивы. Методы приготовления вспомогательных реактивов и растворов, применяемых при анализе

ГОСТ 10157−79 Аргон газообразный и жидкий. Технические условия

ГОСТ 11125−84 Кислота азотная особой чистоты. Технические условия

ГОСТ 14261−77 Кислота соляная особой чистоты. Технические условия

ГОСТ 18300−87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 28473−90 Чугун, сталь, ферросплавы, хром, марганец металлические. Общие требования к методам анализа

3 Общие требования


Общие требования к методам анализа — по ГОСТ 28473.

4 Погрешность измерения


Погрешность измерения приведена в таблице 1.


Таблица 1

В процентах

     
Массовая доля кальция

Норма погрешности результатов анализа ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция

Среднеквадратичное отклонение случайной составляющей погрешности результатов анализа ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция

От 0,001 до 0,002 включ.
0,0008
0,00035
Св. 0,002 до 0,005 «
0,0016
0,00074
» 0,005 «0,01 «
0,0026
0,0012
» 0,01 «0,02 «
0,004
0,0022
» 0,02 «0,05 «
0,007
0,0030
» 0,05 «0,10 «
0,012
0,0052



Предельная погрешность результата анализа рассчитана при уровне доверительной вероятности ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция0,95.

Среднеквадратичное отклонение случайной составляющей измерения рассчитано при уровне доверительной вероятности ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция0,85.

5 Аппаратура, реактивы, растворы


Спектрометрическая установка, состоящая из спектрометра (многоканального или сканирующего последовательного), штатива возбуждения, высокочастотного генератора, измерительной электронной системы и компьютера.

Аргон по ГОСТ 10157.

Стаканы, колбы, воронки из прозрачного кварцевого стекла по ГОСТ 19908.

Колбы мерные из фторопласта 4МБ вместимостью 100 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция.

Цилиндры и стаканы из фторопласта.

Примечание — Вся используемая посуда должна быть тщательно промыта горячей хлористоводородной кислотой (1:2), а затем бидистиллированной водой (водопроводную воду для промежуточного полоскания не применяют).

Весы лабораторные 2-го и 3-го классов точности.

Вода бидистиллированкая по ГОСТ 4517 или эквивалентной степени чистоты (хранят в полиэтиленовой посуде).

Железо, ос.ч., с массовой долей кальция не более 0,0005%.

Кислота хлористоводородная по ГОСТ 14261, дополнительно очищенная и разбавленная 1:2 и 1:9.

Для очистки кислоты в эксикатор наливают хлористоводородную кислоту, на подставку помещают стакан из полиэтилена или фторопласта, наполненный бидистиллированной или деионизированной водой. Соотношение объемов воды и кислоты должно быть 1:6. Эксикатор плотно закрывают крышкой. Полученный таким образом раствор хлористоводородной кислоты, свободной от примесей кальция, плотностью 1,15 можно использовать примерно через 4 дня. Хранят раствор в полиэтиленовой посуде.

Диэтиловый эфир (этиловый эфир медицинский) по нормативному документу.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Кислота азотная, ос.ч., по ГОСТ 11125.

Кислота фтористоводородная, ос.ч., высшей категории.

Кислота хлорная, х.ч.

Кальция карбонат, ос.ч.

Стандартные растворы кальция.

5.1 Приготовление стандартных растворов кальция

5.1.1 Раствор А: 0,250 г карбоната кальция, высушенного при температуре 100 °C в течение 1 ч и охлажденного в эксикаторе до комнатной температуры, помещают в стакан, осторожно добавляют 10 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияхлористоводородной кислоты (1:2), накрывают стакан часовым стеклом и растворяют при умеренном нагревании. Раствор охлаждают, переносят в мерную колбу вместимостью 1 дмГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция, доливают до метки водой и перемешивают. 1 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияраствора, А содержит 100 мкг кальция. Хранят раствор в герметично закрытой полиэтиленовой посуде.

5.1.2 Раствор Б: вносят 10 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияраствора, А в мерную колбу вместимостью 100 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция, добавляют 5 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияхлористоводородной кислоты (1:9), доливают до метки водой и перемешивают. В 1 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияраствора Б содержится 10 мкг кальция. Раствор готовят непосредственно перед употреблением.

5.1.3 Раствор В: в мерную колбу вместимостью 100 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальциявносят 5 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияраствора А, добавляют 5 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияхлористоводородной кислоты (1:9), доливают до метки водой и перемешивают. В 1 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияраствора В содержится 5 мкг кальция. Раствор готовят непосредственно перед употреблением.

6 Подготовка к проведению анализа

6.1 Подготовку прибора к измерениям проводят в соответствии с инструкцией по эксплуатации и обслуживанию прибора. Инструментальные параметры прибора и расходы трех потоков аргона устанавливают в пределах, обеспечивающих максимальную чувствительность определения кальция.

6.2 Установление градуировочных характеристик проводят по раствору В (5.1.3) и раствору хлористоводородной кислоты (1:9). Для каждого раствора выполняют не менее пяти измерений интенсивностей аналитической линии кальция при длине волны 393,37 нм (или 396,847 нм). По средним значениям интенсивностей вычисляют параметры градуировочных характеристик. Массовую долю кальция в растворе В выражают в процентах, соответствующих навеске пробы (0,10% для навески массой 0,5000 г). Параметры градуировочных характеристик записывают в память компьютера.

Примечание — Допускается применять другие методы определения параметров градуировочных характеристик, если это предусмотрено математическим обеспечением прибора.

6.3 Навеску пробы массой 0,5000 г, предварительно промытую в диэтиловом эфире или этиловом спирте и высушенную, растворяют одним из двух способов.

Способ 1: навеску помещают во фторопластовый стакан, добавляют 15 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияхлористоводородной кислоты, накрывают фторопластовой крышкой и растворяют при умеренном нагревании. Затем раствор слегка охлаждают и добавляют 3−5 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияазотной кислоты. После прекращения бурного вспенивания добавляют 5 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияхлорной кислоты и 3−5 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияфтористоводородной кислоты. Продолжают умеренное нагревание до выделения густых белых паров хлорной кислоты.

Предупреждение: хлорная кислота может взрываться в присутствии аммиака, паров азотной кислоты и любых органических реактивов.

Раствор охлаждают, омывают стенки стакана водой и продолжают нагревание до прекращения выделения паров хлорной кислоты. Соли растворяют в 5 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияхлористоводородной кислоты, добавляют 20 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияводы и нагревают до кипения. Горячий раствор профильтровывают в мерную колбу вместимостью 100 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальциячерез фильтр средней плотности, предварительно промытый 5−6 раз горячей хлористоводородной кислотой (1:2) и несколько раз бидистиллированной водой. Осадок на фильтре промывают горячей хлористоводородной кислотой (1:9), добавляя ее небольшими порциями до полного отмывания фильтра от солей железа, а затем несколько раз небольшими объемами горячей воды. Фильтр отбрасывают. Раствор в мерной колбе доводят до метки и перемешивают.

Способ 1 следует использовать при анализе чугунов и углеродистых сталей.

Способ 2: навеску пробы помещают во фторопластовый стакан, добавляют 15 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияхлористоводородной кислоты, накрывают фторопластовой крышкой и растворяют при умеренном нагревании. Затем раствор слегка охлаждают, добавляют 3−5 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияазотной кислоты и вновь нагревают до кипения. После полного растворения пробы выпаривают раствор до влажных солей и добавляют 5 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияхлористоводородной кислоты и 20 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияводы. После полного растворения солей переводят раствор в мерную колбу вместимостью 100 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция, доводят до метки водой и перемеш

ивают.

6.4 Параллельно с растворением пробы, выполняя все операции методики и используя те же количества реактивов, проводят растворение навески карбонильного железа (0,5000 г). Используют этот раствор в качестве раствора контрольного опыта для внесения поправки в результаты анализа на содержание кальция в реагентах.

6.5 Приготовление растворов, используемых для контроля стабильности градуировочных характеристик

6.5.1 Три навески железа массой по 0,5 г помещают во фторопластовые стаканы, добавляют по 15 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияхлористоводородной кислоты и по 5 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияазотной кислоты, накрывают фторопластовыми крышками и растворяют при умеренном нагревании. После полного растворения железа выпаривают раствор до влажных солей, добавляют по 5 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияхлористоводородной кислоты и по 20 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальцияводы, доводят до кипения, охлаждают и переносят в мерные колбы вместимостью 100 смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальциякаждая.

6.5.2 В три мерные колбы, содержащие растворы железа, приготовленные, как описано в 6.5.1, вводят указанные в таблице 2 объемы стандартного раствора Б, доводят до метки водой и перемешивают.


Таблица 2

         
Номер раствора
Массовая доля кальция, %

Объем стандартного раствора Б, смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция

Массовая концентрация кальция, мкг/смГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция

Массовая доля кальция в растворе в пересчете на навеску пробы 0,5000 г, %
1
От 0,001 до 0,10 включ.
0
0
0
2
» 0,001 «0,020 «
10
1
0,02
3
Св. 0,020 «0,10 «
50
5
0,10



Полученные таким образом растворы 1, 2 и 3 используют при контроле стабильности градуировочных характеристик.

Примечание — Необходимо уравнять матричный состав растворов, используемых для контроля стабильности градуировочных характеристик, с составом анализируемых образцов при содержании в последних: хрома и никеля — более 10%; марганца, ванадия, титана и меди — более 5%; вольфрама, алюминия и кобальта — более 2%.


С этой целью растворы 1, 2, 3 готовят, как описано в 6.5.1, вводя кроме навески железа навески других металлов в количествах, соответствующих их содержанию в анализируемом образце.

Общая сумма навесок не должна превышать (0,50±0,01) г. Далее — как указано в 6.5.2.

Растворы 1 и 2 используют для контроля стабильности градуировочных характеристик при анализе материалов с массовой долей кальция до 0,02%, а растворы 1 и 3 используют соответственно при анализе материалов с массовой долей кальция от 0,02% до 0,10%.

Растворы, используемые для контроля стабильности градуировочных характеристик, готовят для каждой партии анализируемых проб.

Примечание — Для подготовки всей серии растворов анализируемых образцов, контрольного опыта и растворов 1, 2, 3 используют реактивы из одной партии.

7 Проведение анализа

7.1 Контроль стабильности градуировочных характеристик осуществляют по процедуре, предусмотренной математическим обеспечением прибора, перед началом проведения анализа. Для контроля стабильности по нижней точке градуировочного графика используют раствор 1, а для контроля стабильности по верхней точке градуировочного графика — растворы 2 и 3 при анализе сталей с массовыми долями кальция, указанными в таблице 1. Для этого выполняют 3−5 измерений интенсивностей кальция, распыляя в плазму соответствующие растворы.

Примечание — Допускается применение других способов контроля стабильности градуировочных характеристик, предусмотренных программными обеспечениями приборов.

7.2 Измерение массовой доли кальция для каждого раствора анализируемых проб проводят следующим образом. Распыляя в плазму соответствующий раствор, выполняют по три параллельных измерения, средний результат которых будет являться одним определением массовой доли кальция в пробе.

7.3 Измерение массовой доли кальция в растворе контрольного опыта проводят, как описано в 7.2.

7.4 После каждого измерения систему промывают распылением в плазму раствора хлористо-водородной кислоты (1:9).

8 Обработка результатов

8.1 Массовую долю кальция в пробе ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция, %, вычисляют по формуле

ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция, (1)


где ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция — массовая доля кальция в анализируемом растворе пробы, %;

ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция — массовая доля кальция в растворе контрольного опыта, %.

За окончательный результат анализа принимают среднеарифметическое результатов двух параллельных определений по двум независимым навескам анализируемой пробы.

Абсолютные допускаемые расхождения результатов параллельных определений при доверительной вероятности ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция0,95 не должны превышать допускаемых расхождений для соответствующего интервала концентраций, приведенных в таблице 3.


Таблица 3 — Нормативы оперативного контроля погрешности и ее случайной составляющей

В процентах

       
Массовая доля кальция

Норматив оперативного контроля сходимости ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция

Норматив оперативного контроля воспроизводимости ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция

Норматив оперативного контроля погрешности ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция

От 0,001 до 0,002 включ.
0,0008
0,0010
0,0005
Св. 0,002 «0,005 «
0,0017
0,0020
0,0010
» 0,005 «0,01 «
0,0027
0,0033
0,0017
» 0,01 «0,02 «
0,005
0,006
0,003
» 0,02 «0,05 «
0,007
0,009
0,004
» 0,05 «0,10 «
0,012
0,015
0,008



Нормативы оперативного контроля сходимости и нормативы контроля воспроизводимости рассчитаны при уровне доверительной вероятности ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция0,95. Нормативы оперативного контроля погрешности рассчитаны при доверительной вероятности ГОСТ Р 51927-2002 Сталь и чугун. Атомно-эмиссионный с индуктивно связанной плазмой спектральный метод определения кальция0,85.

При получении результатов с расхождениями более допускаемых анализ следует повторить, используя новые навески анализируемого образца. Если при повторном анализе расхождения результатов параллельных определений вновь превышают допустимые, пробу бракуют и заменяют новой.

8.2 Периодичность контроля погрешности измерений — по нормативным документам, утвержденным в установленном порядке.