Посещая этот сайт, вы принимаете программу использования cookie. Подробнее о нашей политике использования cookie.

ГОСТ Р 51576-2000

ГОСТ Р ИСО 15353-2014 ГОСТ Р 55080-2012 ГОСТ Р ИСО 16962-2012 ГОСТ Р ИСО 10153-2011 ГОСТ Р ИСО 10280-2010 ГОСТ Р ИСО 4940-2010 ГОСТ Р ИСО 4943-2010 ГОСТ Р ИСО 14284-2009 ГОСТ Р ИСО 9686-2009 ГОСТ Р ИСО 13899-2-2009 ГОСТ 18895-97 ГОСТ 12361-2002 ГОСТ 12359-99 ГОСТ 12358-2002 ГОСТ 12351-2003 ГОСТ 12345-2001 ГОСТ 12344-88 ГОСТ 12350-78 ГОСТ 12354-81 ГОСТ 12346-78 ГОСТ 12353-78 ГОСТ 12348-78 ГОСТ 12363-79 ГОСТ 12360-82 ГОСТ 17051-82 ГОСТ 12349-83 ГОСТ 12357-84 ГОСТ 12365-84 ГОСТ 12364-84 ГОСТ Р 51576-2000 ГОСТ 29117-91 ГОСТ 12347-77 ГОСТ 12355-78 ГОСТ 12362-79 ГОСТ 12352-81 ГОСТ Р 50424-92 ГОСТ Р 51056-97 ГОСТ Р 51927-2002 ГОСТ Р 51928-2002 ГОСТ 12356-81 ГОСТ Р ИСО 13898-1-2006 ГОСТ Р ИСО 13898-3-2007 ГОСТ Р ИСО 13898-4-2007 ГОСТ Р ИСО 13898-2-2006 ГОСТ Р 52521-2006 ГОСТ Р 52519-2006 ГОСТ Р 52520-2006 ГОСТ Р 52518-2006 ГОСТ 1429.14-2004 ГОСТ 24903-81 ГОСТ 22662-77 ГОСТ 6012-2011 ГОСТ 25283-93 ГОСТ 18318-94 ГОСТ 29006-91 ГОСТ 16412.4-91 ГОСТ 16412.7-91 ГОСТ 25280-90 ГОСТ 2171-90 ГОСТ 23401-90 ГОСТ 30642-99 ГОСТ 25698-98 ГОСТ 30550-98 ГОСТ 18898-89 ГОСТ 26849-86 ГОСТ 26876-86 ГОСТ 26239.5-84 ГОСТ 26239.7-84 ГОСТ 26239.3-84 ГОСТ 25599.4-83 ГОСТ 12226-80 ГОСТ 23402-78 ГОСТ 1429.9-77 ГОСТ 1429.3-77 ГОСТ 1429.5-77 ГОСТ 19014.3-73 ГОСТ 19014.1-73 ГОСТ 17235-71 ГОСТ 16412.5-91 ГОСТ 29012-91 ГОСТ 26528-98 ГОСТ 18897-98 ГОСТ 26529-85 ГОСТ 26614-85 ГОСТ 26239.2-84 ГОСТ 26239.0-84 ГОСТ 26239.8-84 ГОСТ 25947-83 ГОСТ 25599.3-83 ГОСТ 22864-83 ГОСТ 25599.1-83 ГОСТ 25849-83 ГОСТ 25281-82 ГОСТ 22397-77 ГОСТ 1429.11-77 ГОСТ 1429.1-77 ГОСТ 1429.13-77 ГОСТ 1429.7-77 ГОСТ 1429.0-77 ГОСТ 20018-74 ГОСТ 18317-94 ГОСТ Р 52950-2008 ГОСТ Р 52951-2008 ГОСТ 32597-2013 ГОСТ Р 56307-2014 ГОСТ 33731-2016 ГОСТ 3845-2017 ГОСТ Р ИСО 17640-2016 ГОСТ 33368-2015 ГОСТ 10692-2015 ГОСТ Р 55934-2013 ГОСТ Р 55435-2013 ГОСТ Р 54907-2012 ГОСТ 3845-75 ГОСТ 11706-78 ГОСТ 12501-67 ГОСТ 8695-75 ГОСТ 17410-78 ГОСТ 19040-81 ГОСТ 27450-87 ГОСТ 28800-90 ГОСТ 3728-78 ГОСТ 30432-96 ГОСТ 8694-75 ГОСТ Р ИСО 10543-99 ГОСТ Р ИСО 10124-99 ГОСТ Р ИСО 10332-99 ГОСТ 10692-80 ГОСТ Р ИСО 17637-2014 ГОСТ Р 56143-2014 ГОСТ Р ИСО 16918-1-2013 ГОСТ Р ИСО 14250-2013 ГОСТ Р 55724-2013 ГОСТ Р ИСО 22826-2012 ГОСТ Р 55143-2012 ГОСТ Р 55142-2012 ГОСТ Р ИСО 17642-2-2012 ГОСТ Р ИСО 17641-2-2012 ГОСТ Р 54566-2011 ГОСТ 26877-2008 ГОСТ Р ИСО 17641-1-2011 ГОСТ Р ИСО 9016-2011 ГОСТ Р ИСО 17642-1-2011 ГОСТ Р 54790-2011 ГОСТ Р 54569-2011 ГОСТ Р 54570-2011 ГОСТ Р 54153-2010 ГОСТ Р ИСО 5178-2010 ГОСТ Р ИСО 15792-2-2010 ГОСТ Р ИСО 15792-3-2010 ГОСТ Р 53845-2010 ГОСТ Р ИСО 4967-2009 ГОСТ 6032-89 ГОСТ 6032-2003 ГОСТ 7566-94 ГОСТ 27809-95 ГОСТ 22974.9-96 ГОСТ 22974.8-96 ГОСТ 22974.7-96 ГОСТ 22974.6-96 ГОСТ 22974.5-96 ГОСТ 22974.4-96 ГОСТ 22974.3-96 ГОСТ 22974.2-96 ГОСТ 22974.1-96 ГОСТ 22974.13-96 ГОСТ 22974.12-96 ГОСТ 22974.11-96 ГОСТ 22974.10-96 ГОСТ 22974.0-96 ГОСТ 21639.9-93 ГОСТ 21639.8-93 ГОСТ 21639.7-93 ГОСТ 21639.6-93 ГОСТ 21639.5-93 ГОСТ 21639.4-93 ГОСТ 21639.3-93 ГОСТ 21639.2-93 ГОСТ 21639.0-93 ГОСТ 12502-67 ГОСТ 11878-66 ГОСТ 1763-68 ГОСТ 13585-68 ГОСТ 16971-71 ГОСТ 21639.10-76 ГОСТ 2604.1-77 ГОСТ 11930.7-79 ГОСТ 23870-79 ГОСТ 11930.12-79 ГОСТ 24167-80 ГОСТ 25536-82 ГОСТ 22536.2-87 ГОСТ 22536.11-87 ГОСТ 22536.6-88 ГОСТ 22536.10-88 ГОСТ 17745-90 ГОСТ 26877-91 ГОСТ 8233-56 ГОСТ 1778-70 ГОСТ 10243-75 ГОСТ 20487-75 ГОСТ 12503-75 ГОСТ 21548-76 ГОСТ 21639.11-76 ГОСТ 2604.8-77 ГОСТ 23055-78 ГОСТ 23046-78 ГОСТ 11930.11-79 ГОСТ 11930.1-79 ГОСТ 11930.10-79 ГОСТ 24715-81 ГОСТ 5639-82 ГОСТ 25225-82 ГОСТ 2604.11-85 ГОСТ 2604.4-87 ГОСТ 22536.5-87 ГОСТ 22536.7-88 ГОСТ 6130-71 ГОСТ 23240-78 ГОСТ 3242-79 ГОСТ 11930.3-79 ГОСТ 11930.5-79 ГОСТ 11930.9-79 ГОСТ 11930.2-79 ГОСТ 11930.0-79 ГОСТ 23904-79 ГОСТ 11930.6-79 ГОСТ 7565-81 ГОСТ 7122-81 ГОСТ 2604.3-83 ГОСТ 2604.5-84 ГОСТ 26389-84 ГОСТ 2604.7-84 ГОСТ 28830-90 ГОСТ 21639.1-90 ГОСТ 5640-68 ГОСТ 5657-69 ГОСТ 20485-75 ГОСТ 21549-76 ГОСТ 21547-76 ГОСТ 2604.6-77 ГОСТ 22838-77 ГОСТ 2604.10-77 ГОСТ 11930.4-79 ГОСТ 11930.8-79 ГОСТ 2604.9-83 ГОСТ 26388-84 ГОСТ 14782-86 ГОСТ 2604.2-86 ГОСТ 21639.12-87 ГОСТ 22536.8-87 ГОСТ 22536.0-87 ГОСТ 22536.3-88 ГОСТ 22536.12-88 ГОСТ 22536.9-88 ГОСТ 22536.14-88 ГОСТ 22536.4-88 ГОСТ 22974.14-90 ГОСТ 23338-91 ГОСТ 2604.13-82 ГОСТ 2604.14-82 ГОСТ 22536.1-88 ГОСТ 28277-89 ГОСТ 16773-2003 ГОСТ 7512-82 ГОСТ 6996-66 ГОСТ 12635-67 ГОСТ 12637-67 ГОСТ 12636-67 ГОСТ 24648-90

ГОСТ Р 51576−2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди


ГОСТ Р 51576−2000

Группа В39


ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СПЛАВЫ И ПОРОШКИ ЖАРОПРОЧНЫЕ, КОРРОЗИОННО-СТОЙКИЕ, ПРЕЦИЗИОННЫЕ НА ОСНОВЕ НИКЕЛЯ

Методы определения меди

Heat-proof, corrosion-resistant, precision alloys and powders on the basis of nickel. Methods of copper determination


МКС 77.100.20*
ОКСТУ 1700
____________________
* В указателе «Национальные стандарты» 2008 г.
МКС 77.120. — Примечание изготовителя базы данных.

Дата введения 2001−01−01



Предисловие

1 РАЗРАБОТАН И ВНЕСЕН Техническим комитетом по стандартизации ТК 145 «Методы контроля металлопродукции"

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 23 марта 2000 г. N 63-ст

3 ВВЕДЕН ВПЕРВЫЕ

1 Область применения


Настоящий стандарт устанавливает экстракционно-фотометрический (при массовой доле меди от 0,005% до 0,1%) и атомно-абсорбционный (при массовой доле меди от 0,01% до 6,0%) методы определения меди в жаропрочных, коррозионно-стойких и прецизионных сплавах и порошках на основе никеля.

2 Нормативные ссылки


В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 849−97* Никель первичный. Технические условия
________________
* На территории Российской Федерации действует ГОСТ 849–2008, здесь и далее по тексту. — Примечание изготовителя базы данных.

ГОСТ 859−78* Медь. Марки
________________
* На территории Российской Федерации действует ГОСТ 859–2001, зЗдесь и далее по тексту. — Примечание изготовителя базы данных.

ГОСТ 3118–77 Кислота соляная. Технические условия

ГОСТ 3760−79 Аммиак водный. Технические условия

ГОСТ 4204−77 Кислота серная. Технические условия

ГОСТ 4461−77 Кислота азотная. Технические условия

ГОСТ 5457−75 Ацетилен растворенный и газообразный технический. Технические условия

ГОСТ 6552−80 Кислота ортофосфорная. Технические условия

ГОСТ 8864−71 Натрия N, N-диэтилдитиокарбамат 3-водный. Технические условия

ГОСТ 10652−73 Соль динатриевая этилендиамин-N, N, N', N'-тетрауксусной кислоты 2-водная (трилон Б). Технические условия

ГОСТ 11125−84 Кислота азотная особой чистоты. Технические условия

ГОСТ 14261−77 Кислота соляная особой чистоты. Технические условия

ГОСТ 14262−78 Кислота серная особой чистоты. Технические условия

ГОСТ 24147−80 Аммиак водный особой чистоты. Технические условия

ГОСТ 28473−90 Чугун, сталь, ферросплавы, хром, марганец металлические. Общие требования к методам анализа

3 Общие требования


Общие требования к методам анализа — по ГОСТ 28473.

4 Экстракционно-фотометрический метод определения меди (0,005% — 0,1%)

4.1 Сущность метода

Метод основан на образовании в аммиачном растворе (рН 8,5−9,0) окрашенного в желтый цвет комплексного соединения двухвалентной меди с диэтилдитиокарбаматом натрия, экстрагируемого хлороформом. Влияние никеля, хрома, молибдена, кобальта, марганца, железа устраняют добавлением лимоннокислого аммония и трилона Б.

4.2 Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр со всеми принадлежностями для измерения в видимой области спектра.

рН-метр.

Кислота хлористоводородная по ГОСТ 3118 или ГОСТ 14261.

Кислота азотная по ГОСТ 4461 или ГОСТ 11125.

Кислота азотная, разбавленная (1:1).

Кислота серная по ГОСТ 4204 или ГОСТ 14262.

Кислота серная, разбавленная (1:1).

Кислота ортофосфорная по ГОСТ 6552.

Аммиак водный по ГОСТ 3760 или ГОСТ 24147.

Соль динатриевая этилендиамин-N, N, N', N'-тетрауксусной кислоты 2-водная (трилон Б) по ГОСТ 10652, раствор 10 г/дмГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди: растворяют 10 г трилона Б в 70−80 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медиводы при нагревании, охлаждают, доливают до 1000 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медиводой.

Натрия N, N-диэтилдитиокарбамат 3-водный по ГОСТ 8864.

Натрия N, N-диэтилдитиокарбамат 3-водный, раствор 1 г/дмГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди; готовят непосредственно перед использованием.

Натрия N, N-диэтилдитиокарбамат 3-водный, раствор 5 г/дмГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди; готовят непосредственно перед использованием.

Хлороформ.

Аммоний лимоннокислый двузамещенный, раствор 250 г/дмГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, очищенный от примесей тяжелых металлов экстракцией их комплексов с диэтилдитиокарбаматом натрия хлороформом. В делительную воронку вместимостью 500 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медипомещают 250 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медираствора лимоннокислого аммония, добавляют раствор аммиака до рН 9,0 по универсальной индикаторной бумаге, 25 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медираствора диэтилдитиокарбамата натрия, 50 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медихлороформа и энергично встряхивают в течение 2 мин. Хлороформный слой отбрасывают.

Медь марки М00б или М00к по ГОСТ 859.

Стандартные растворы меди.

Раствор А: 1 г меди помещают в стакан вместимостью 250−300 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, приливают 20−25 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медиазотной кислоты (1:1), накрывают стакан часовым стеклом и растворяют навеску при нагревании. Добавляют 30 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медисерной кислоты (1:1), выпаривают раствор до начала выделения паров серной кислоты, охлаждают, стенки стакана и часовое стекло обмывают водой и снова выпаривают до паров серной кислоты, охлаждают. Соли растворяют в 70−80 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медиводы при нагревании, раствор переносят в мерную колбу вместимостью 1 дмГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, охлаждают, доливают до метки водой и перемешивают.

1 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медистандартного раствора, А содержит 0,001 г меди.

Раствор Б: 10 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медистандартного раствора, А переносят в мерную колбу вместимостью 100 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, доливают до метки водой и перемешивают.

1 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медистандартного раствора Б содержит 0,0001 г меди.

Универсальная индикаторная бум

ага, рН 1−10.

4.3 Проведение анализа

4.3.1 Приготовление испытуемого раствора

Массу навески сплава 0,25−1 г в соответствии с таблицей 1 помещают в стакан (или колбу) вместимостью 250−300 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, приливают 30 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медисмеси хлористоводородной и азотной кислот (3:1 или 8:1), 5 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медиортофосфорной кислоты, накрывают часовым стеклом и растворяют навеску при умеренном нагревании.


Таблица 1

           
Массовая доля меди, %
Масса навески, г
От 0,005 до 0,02 включ. 1,0
Св. 0,02 « 0,05 « 0,5
« 0,05 « 0,10 « 0,25



Приливают 15 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медисерной кислоты (1:1) и выпаривают раствор до выделения паров серной кислоты, охлаждают.

Стенки стакана и часовое стекло обмывают водой и выпаривают раствор до выделения паров серной кислоты. Соли растворяют в 50−60 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медиводы при нагревании, раствор охлаждают, переносят в мерную колбу вместимостью 100 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, доливают до метки водой и перемешивают.

Раствор отфильтровывают через сухой фильтр средней плотности в сухую коническую колбу вместимостью 100 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, отбрасывая первые порции фильтрата.

4.3.2 Спектрофотометрическая процедура анализа

Аликвотную часть раствора 10 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медипомещают в стакан вместимостью 50−100 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, приливают 5 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медираствора лимоннокислого аммония, 10 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медираствора трилона Б, перемешивают и прибавляют раствор аммиака до рН 8−9, контролируя рН на рН-метре или по универсальной индикаторной бумаге.

Раствор переносят в делительную воронку вместимостью 150−200 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, доливают водой до 60−70 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, прибавляют 5 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медираствора диэтилдитиокарбамата натрия, 10 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медихлороформа и экстрагируют, энергично встряхивая воронку в течение 2 мин. Водному и хлороформному слоям дают отстояться и сливают хлороформный слой в сухую мерную колбу вместимостью 25 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, фильтруя его через сухую вату.

К оставшемуся в делительной воронке водному раствору добавляют 5 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медихлороформа и вновь экстрагируют в течение 2 мин. После отстаивания раствора хлороформный слой сливают в ту же колбу вместимостью 25 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, раствор доливают до метки хлороформом и перемешивают.

Оптическую плотность раствора измеряют сразу после экстракции на спектрофотометре при длине волны 435 нм или на фотоэлектроколориметре со светофильтром, имеющим область пропускания в интервале длин волн от 420 до 450 нм в кювете с толщиной поглощающего свет слоя 2 см.

В качестве раствора сравнения используют хлороформ. Массу меди находят по градуировочному графику с учетом поправки контрольного о

пыта.

4.3.3 Построение градуировочного графика

В шесть стаканов (или колб) вместимостью 250−300 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медипомещают отмеренные количества стандартного раствора Б меди 0,00; 0,50; 1,00; 1,50; 2,00; 2,50 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, что соответствует 0; 0,5·10ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди; 1,0·10ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди; 1,5·10ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди; 2,0·10ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди; 2,5·10ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медиг меди.

Во все стаканы приливают по 30 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медисмеси хлористоводородной и азотной кислот (3:1 или 8:1), 5 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медиортофосфорной кислоты, накрывают стаканы часовыми стеклами и далее поступают в соответствии с 4.3.1 и 4.3.3.

Из значения оптической плотности анализируемых растворов вычитают значение оптической плотности контрольного опыта. По найденным значениям оптической плотности и соответствующим им массам меди строят градуировочный граф

ик.

4.4 Обработка результатов

4.4.1 Массовую долю меди ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, %, вычисляют по формуле

ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, (1)


где ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди- масса меди, найденная по градуировочному графику, г;

ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди — масса навески сплава, г.

5 Атомно-абсорбционный метод определения меди (0,01% — 6,0%)

5.1 Сущность метода

Метод основан на измерении при ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди324,8 нм поглощения резонансного излучения свободными атомами меди, образующимися в результате распыления анализируемого раствора в пламени воздух-ацетилен.

5.2 Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрофотометр.

Лампа с полым катодом для определения меди.

Ацетилен по ГОСТ 5457.

Компрессор, обеспечивающий подачу сжатого воздуха или баллон со сжатым воздухом.

Кислота хлористоводородная по ГОСТ 3118 или ГОСТ 14261.

Кислота азотная по ГОСТ 4461 или ГОСТ 11125.

Кислота азотная, разбавленная (1:1).

Кислота серная по ГОСТ 4204 или ГОСТ 14262.

Кислота серная, разбавленная (1:1).

Кислота ортофосфорная по ГОСТ 6552.

Кислота ортофосфорная, разбавленная (1:1).

Смесь хлористоводородной и азотной кислот: три части хлористоводородной кислоты смешивают с одной частью азотной кислоты.

Медь марки М00б и М00к по ГОСТ 859.

Никель марки Н-0 по ГОСТ 849.

Стандартные растворы меди.

Раствор А: 1 г меди растворяют при нагревании в 20−30 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медиазотной кислоты (1:1). Раствор кипятят до удаления окислов азота, охлаждают, переносят в мерную колбу вместимостью 1 дмГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, доливают до метки водой и перемешивают.

1 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медистандартного раствора, А содержит 0,001 г меди.

Раствор Б: 10 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медистандартного раствора, А помещают в мерную колбу вместимостью 100 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, доливают до метки водой и перемешивают.

1 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медистандартного раствора Б содержит 0,0001 г меди

.

5.3 Проведение анализа

5.3.1 Приготовление испытуемого раствора

Массу навески сплава 0,1−0,5 г в соответствии с таблицей 2 помещают в стакан вместимостью 250−300 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, приливают 30 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медисмеси хлористоводородной и азотной кислот, 6 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медисерной кислоты (1:1) и 6 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медиортофосфорной кислоты (1:1) и растворяют при нагревании.


Таблица 2

               
Массовая доля меди, % Масса навески, г

Разбавление основного раствора, смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди

Объем аликвотной части раствора, смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди

От 0,01 до 0,05 включ. 0,5
100 -
Св. 0,05 « 0,5 « 0,2
100 -
« 0,5 « 1,0 « 0,1
100 -
« 1,0 « 3,0 « 0,1
100 20
« 3,0 « 6,0 « 0,1
100 10



Раствор выпаривают до паров серной кислоты и охлаждают. Соли растворяют при нагревании в 30−40 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медиводы и охлаждают. Раствор переносят в мерную колбу вместимостью 100 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, доливают до метки водой и перемешивают. Аликвотную часть раствора в соответствии с таблицей 1 помещают в мерную колбу вместимостью 100 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, прибавляют 5 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медисерной кислоты (1:1), доливают до метки водой и перемешивают.

Для контрольного опыта в стакан вместимостью 250−300 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медиприливают все реактивы, применяемые при анализе.

Допускается другое разбавление растворов таким образом, чтобы концентрация меди находилась в интервале, соответствующем прямолинейному участку градуировочного графика.

5.3.2 Подготовка прибора к измерению

Прибор готовят к работе в соответствии с прилагаемой к нему инструкцией.

Настраивают спектрофотометр на резонансную линию 324,8 нм. После включения системы подачи газов и зажигания горелки распыляют воду и устанавливают прибор на нуль.

5.3.3 Спектрометрическая процедура анализа

Распыляют в пламя раствор контрольного опыта, а затем испытуемые растворы в порядке увеличения концентрации меди до получения стабильных показаний для каждого раствора.

Перед введением в пламя каждого испытуемого раствора распыляют воду для промывания системы и проверки нулевой точки.

Из среднего значения оптической плотности каждого из испытуемых растворов вычитают среднее значение оптической плотности контрольного опыта.

Массу меди находят по градуировочному графику.

5.3.4 Построение градуировочных графиков

5.3.4.1 Построение градуировочного графика при массовой доле меди от 0,01% до 0,1%

В семь стаканов вместимостью 250−300 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медипомещают навески никеля в количестве, соответствующем массе навески сплава (таблица 2).

В шесть стаканов приливают последовательно 0,5; 1,0; 1,5; 2,0; 2,5 и 3,0 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медистандартного раствора Б меди. Седьмой стакан служит для проведения контрольного опыта. Во все стаканы приливают по 30−40 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медисмеси хлористоводородной и азотной кислот и далее поступают в соответствии с 5.3.1 и 5.3.3.

Из среднего значения оптической плотности испытуемого раствора вычитают среднее значение оптической плотности контрольного опыта.

По найденным значениям оптической плотности и соответствующим им массам меди строят градуировочный график.

5.3.4.2 Построение градуировочного графика при массовой доле меди свыше 0,1% до 6,0%

В шесть стаканов вместимостью 250−300 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медипомещают навески никеля в количестве, соответствующем массе навески сплава (таблица 2).

В пять стаканов приливают последовательно 2,0; 4,0; 6,0; 8,0 и 10,0 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медистандартного раствора Б меди. Шестой стакан служит для проведения контрольного опыта.

Во все стаканы приливают по 30−40 смГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения медисмеси хлористоводородной и азотной кислот и далее поступают в соответствии с 5.3.1 и 5.3.3.

Из среднего значения оптической плотности испытуемого раствора вычитают среднее значение оптической плотности контрольного опыта.

По найденным значениям оптической плотности и соответствующим им массам меди строят градуировочный график.

5.4 Обработка результатов

5.4.1 Массовую долю меди ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, %, вычисляют по формуле

ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди, (2)


где ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди- масса меди, найденная по градуировочному графику, г;

ГОСТ Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди- масса навески сплава, г.

Нормы точности и нормативы контроля точности определения массовой доли меди приведены в таблице 3.


Таблица 3

                   
Массовая доля меди, % Погрешность результатов анализа Допускаемое расхождение, %
  двух средних результатов, выполненных в различных условиях двух параллельных определений трех параллельных определений результатов анализа стандартного образца и аттестованного значения
От 0,005 до 0,01 включ. 0,004
0,005 0,004 0,005 0,002
Св. 0,01 « 0,02 « 0,005
0,007 0,006 0,007 0,003
« 0,02 « 0,05 « 0,008
0,011 0,009 0,011 0,005
« 0,05 « 0,1 « 0,012
0,015 0,012 0,015 0,008
« 0,1 « 0,2 « 0,017
0,021 0,017 0,021 0,011
« 0,2 « 0,5 « 0,026
0,033 0,028 0,034 0,017
« 0,5 « 1,0 « 0,04
0,05 0,04 0,05 0,02
« 1,0 « 2,0 « 0,05
0,07 0,06 0,07 0,03
« 2,0 « 5 « 0,08
0,11 0,09 0,11 0,06
« 5 « 6 « 0,12
0,15 0,12 0,15 0,08